
Quantitative determination limit in chromatography: 
computer-based simulations 

ABSTRACT 

Following the previously developed statistical approach of the peak overlapping phenomenon in the 
chromatography of complex mixtures, computer-simulated chromatograms were generated to investigate 
the inRuence of this phenomenon on the accuracy of quantitative determinations. The probabilities of 
performing the quantitative determination, with an error smaller than or equal to a given value, of the most 
abundant component in a peak observed in the chromatogram, and of a given sample component were 
computed as a function of the relative height or area of the observed peak and of the relative area of the 
component, respectively, for different values of the accepted error. In addition, these probabilities were 
shown to depend significantly on the chromatographic saturation factor, which reflects the degree of 
occupancy of the space available for the separation by the sample. Surprisingly, it appears that small peaks 
observed in the chromatogram are more likely than large peaks to be pure. However, the probability of the 
correct quantitative determination of a sample component increases with its concentration in the sample. 
The determination limit, defined as the minimum relative amount of a component in the sample required to 
have a given probability ofperforming its quantitative determination with an error smaller than or equal to 
a given value, when taking into account the peak overlap phenomenon, was derived. 

INTRODUCTION 

Recent developments in chromatographic techniques, such as an increase in 
column efficiency through the use of columns with very small inner diameters in gas 
chromatography and of very fine particles in liquid chromatography, the preparation 
of stationary phases with improved stability and reproducibility, the use of highly 
sensitive detectors and the achievement of high reproducibility in injection and mo- 
bile phase delivery systems, have allowed chromatographers to analyse more and 
mire complex matrices. The quantitative determination of particular compounds 
remains the major goal of such analyses. In a complex matrix, the main source of 
errors, when performing quantitative determinations, is essentially due to the peak 
interference phenomenon. which is obviously greater for mixtures containing a large 
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number of solutes. The seriousness of the peak overlap phenomenon and its effect on 
the analytical information losses have been already pointed out [l-5]. 

It has been shown that in a crowded chromatogram, the probability of ob- 
taining a single uncontaminated peak, with a reasonable fixed degree of purity, is 
extremely low. It depends on what can be called the chromatographic saturation, i.e., 
on the extent to which the space available for the separation, which can be expressed 
in terms of the peak capacity of the system [6], is to be occupied by all the sample 
components. Then, one can regard the accuracy of the quantitative determinations in 
chromatography from a probabilistic point of view. Hence, in a crowded chroma- 
togram, we have only a limited probability of performing the quantitative determina- 
tion, with an error smaller than or equal to a fixed value, of any solute belonging to 
the mixture. This probability depends on the degree of saturation of the chroma- 
togram, but also on the relative analytical response of the solute. This relative re- 
sponse may be expressed as the ratio of the area of the so-called parent peak (i.e., the 
peak which would be obtained if an amount of the solute under consideration equal 
to that present in the sample was chromatographed alone, under experimental condi- 
tions identical with those selected for the analysis of the mixture) to the sun of the 
areas of all parent peaks, which is also the area of the whole chromatogram. In fact, 
when the response of the solute parent peak represents an important fraction of the 
whole chromatogram response, the probability of performing its quantitative deter- 
mination, with an error smaller than or equal to a fixed value, is relatively high, 
because the height and area of the largest chromatographic parent peaks are most 
likely to remain almost unmodified by the interference with the other parent peaks of 
the mixture. However, when the parent peak relative response is weak, the latter 
probability will become relatively low because the small parent peaks, when interfer- 
ing with the others, exhibit a greater probability of being hidden by the largest ones. 
Accordingly, a small parent peak will most likely belong to a cluster which has a 
height and an area greatly different from those of the parent peak considered. In the 
following, the peaks of the envelope of the chromatogram will be called observed 
peaks. Each observed peak contains one or several parent peaks. 

Nag& and co-workers [7,8] were the first to use this probabilistic point of view 
in their computer simulation studies of the effect of peak interference on the correct- 
ness of quantitative chromatographic determinations, when analysing plant extracts 
by reversed-phase high-performance gradient elution liquid chromatography. In or- 
der to simulate a typical plant extract chromatogram, a parent peak area distribution 
function was required. They used a distribution which was estimated from the observ- 
ed peak area distribution function, itself obtained by chromatographing 62 plant 
extracts. They computed the probability that the most abundant component (in terms 
of detector response) belonging to an observed peak represents more than 50, 90 or 
95% of the total relative area of this observed peak. Then, the error associated with 
the quantitative determination of the most abundant component was smaller than 50, 
10 or 5%, respectively. In addition, they computed the probability of performing a 
quantitative determination, with an error smaller than or equal to a fixed value, of a 
parent peak with a given relative response. They showed that these two probabilities 
depend on the peak capacity of the system and on the relative response of the peak. In 
order to characterize the ability of the chromatographic system to perform quantita- 
tive determinations, they introduced a parameter termed the quantitative determina- 
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tion limit, DL:, which corresponds to the minimum relative response that a parent 
peak solute must have in the chromatogram in order to have a given probability, p, of 
performing its quantitative determination with an error smaller than or equal to a 
fixed value, e. At a fixed probability level of performing the quantitative determina- 
tion with a fixed relative error, it is clear that the parameter DLg varies with the peak 
capacity of the system. The higher is the resolving power of the chromatographic 
system, the lower will be 04, and hence the lower are the amounts of solutes that can 
be determined with a fixed probability and a certain error. 

It should be pointed out that the conversion of DL:, expressed in terms of 
solute relative response, to its value in terms of solute amount (weight fraction of 
solute in the analysed mixture), leads, when response factors are known, to a specific 
quantitative determination limit parameter SDL:, which characterizes the ability of 
the system to determine a specific compound. Accordingly, the optimization of quan- 
titative determinations for a complex matrix corresponds to a search of experimental 
conditions in order to reach a global minimum for all the SOL: corresponding to the 
components of interest, i.e., a simplex optimization performed on a space dimension 
equal to the number of components of interest plus the number of the experimental 
parameters to be optimized. 

The parameter SDLf is to be distinguished from the classical “limit of determi- 
nation” [9,10], which is conventionally defined as the minimum amount of a compo- 
nent producing an analytical signal above which it is considered that the solute can be 
quantified consistently, within a level of confidence. Of course, in the estimation of 
the classical limit of determination, apart from the instrumental intrinsic sources of 
error, none of the other sources of signal perturbations are to be taken into account 
such as those induced by the presence of the other solutes in the sample. In this study, 
assuming that the sources of errors in quantitative determinations from complex 
chromatograms are principally due to peak overlap phenomena, the concept of the 
quantitative determination limit, DL:, allows one to take into account, in prob- 
abilistic terms, the matrix effects as a function of the resolving power of the chroma- 
tographic system. 

The probability of performing a quantitatiie determination of a parent peak, 
with an error smaller than or equal to a fixed value, and thus DLf, depends on the 
chromatographic saturation factor, i.e., the ratio of the real number of detectable 
components, M, in the sample to the dimensionless length of the separation space, T. 
In elution chromatography, T represents the ratio of the distance over which the 
chromatogram is spread (expressed in time units) to some appropriate reference time. 
When the standard deviation is the same for all the parent peaks, which is generally 
acceptable assumption in liquid chromatography with linear solvent strength gra- 
dient elution and in gas chromatography with linear temperature programming 
[11,12], Tis linearly proportional to the peak capacity, n,, of the system. Under these 
chromatographic conditions, one may express, for convenience, Tin standard devia- 
tion units. Thus, for a given sample with m detectable components, the above prob- 
ability and DL: depend on the system peak capacity, n,. However, Nag& and co- 
workers [7,8] did not state precisely the number of parent peaks, m, used in their 
computer simulations in order to estimate the different probabilities of quantitative 
determinations. Unfortunately, the different curves they presented cannot be used for 
practical estimations of the quantitative determination limits in real chromatograms, 
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because the saturation factors to which the resulting curves correspond are not 
known. In addition, although the quasi-exponential peak-height distribution func- 
tion used by these authors is similar, for a large number of components, to the 
theoretical one [13], it is a specific one corresponding only to phenolic plant extracts. 
Further, the procedure they used to estimate the distribution function of the parent 
peak areas seems to be very sensitive to the degree of chromatographic saturation, 
and thus this estimation is not an unequivocal operation. 

The objective of this study was to generalize the different probabilities curves of 
quantitative determinations by utilizing a theoretical parent peak-height distribution 
function and also by expressing those probabilities and DL: as a function of the 
chromatographic saturation factor, m/T. The use of m/T is preferred to that of m/nc 
as the former, in contrast to the latter, does not imply the selection, on an arbitrary 
basis, of a value for the critical resolution needed to compute n,. Indeed, it has been 
shown that this critical resolution depends on the peak-height distribution of the 
parent peaks [14]. One can note that the saturation factor, m/T, defined above is one 
quarter of the saturation parameter, m/n,, used by Davis and Giddings [l] on the 
basis of a four standard deviation (4~) separation between consecutive peaks. In the 
following, the method selected for quantitative measurements (peak height or peak 
area) is first discussed, together with its effect on the quantitative determination prob- 
abilities. Two different quantitative determination probabilities will be calculated by 
means of computer simulations: for an observed peak, having a given relative re- 
sponse, we estimated the probability of performing the quantitative determination, 
with an error smaller than or equal to a fixed value, of the major parent peak belong- 
ing to this observed peak. This probability depends on the relative response of the 
observed peak and on the chromatographic saturation factor. Then, the probability 
of performing the quantitative determination, with an error smaller than or equal to a 
fixed value, of a parent peak of a given relative abundance in the chromatogram is 
estimated. This probability depends on the relative abundance of the parent peak and 
on the saturation factor. Finally, the estimation of DL: is performed for different 
values ofp and e, using the latter probability curves. 

MODEL AND COMPUTER SIMULATION PROCEDURE 

In order to simplify the computational procedure of synthetic chromatograms, 
one assumes that the parent peaks are Gaussian with a constant standard deviation 
along the retention axis. Under these conditions, the parent peak-height distribution 
is identical with the distribution of the products of the concentration (in the sample) 
by the detection response factor of the sample components. One assumes that this 
distribution is the same as the distribution of the concentrations of the sample com- 
ponents, i.e., that the convolution of the concentration distribution by the component 
distribution does not affect or affects only slightly the concentration distribution. It 
was found that there is some support for this hypothesis in liquid chromatography 
[15]. Thus, under these conditions, the parent peak-height distribution is identical 
with the component concentration distribution, which is determined from a statistical 
theory of concentration distribution in complex samples [13]. 

A program written in Pascal and run on an SPS-7 computer (Bull, Louve- 
ciennes, France) allows the simulation of the synthetic chromatograms. To obtain a 
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chromatogram with a fixed saturation factor, m/T, first two components are selected 
and the difference between their retention times is set to T standard deviations, then 
the m-2 other components are randomly distributed within this time interval. The 
random function was available from the Pascal Library and has a period equal to 
232- 1; its sequence can be modified by changing the function argument. This func- 
tion was used to obtain both the retention times of the randomly positioned parent 
peaks and their heights from a random selection through a file where all the peaks 
heights are listed. The arguments of the random functions for the retention time and 
peak-height selection are different. Different simulated chromatograms are obtained 
simply by changing the random function arguments. As discussed above, the assump- 
tions of randomness of the distribution of retention times of the sample components 
and of constant deviation have been shown to be realistic in the case of some analyses 
using linear solvent strength gradient elation in liquid chromatography or linear 
temperature programming in gas chromatography, for solutes with no well defined 
correlation in the molecular structure [11,12,15]. 

For each simulated chromatogram, a procedure permits the determination of 
the area and the height of each observed peak, in addition to the retention time of 
each valley appearing in the chromatogram. An observed peak corresponds to the 
feature of the chromatogram appearing either between two consecutive valleys or 
before the first valley or after the last one. Accordingly, there are as many observed 
peaks as there are maxima in the chromatogram. It is then necessary to identify each 
observed peak. For this, the following procedure is adopted: any parent peak which 
has its retention time between the retention times of two consecutive valleys is consid- 
ered to belong to the observed peak defined by those valleys. Parent peaks whose 
retention times are either before the retention time of the first valley or after the 
retention time of the last valley are considered to belong to the first and to the last 
observed peaks, respectively. 

In the following, each parent peak is characterized by its relative height, Hr,, 
and its relative area, Ar,. As the parent peaks are assumed to be Gaussian and to have 
the same standard deviation, these two quantities are identical. For each simulation, 
the relative area, Ar,, and the relative height, Hr., of each observed peak are comput- 
ed. Ar. is the ratio of the area of the observed peak, as defined above, to the total area 
of the chromatogram. Hr, is the ratio of the height of the observed peak to the sum of 
the heights of all observed peaks. With each observed peak is associated a most 
abundant parent peak, which corresponds to the parent peak, belonging to this ob- 
served peak, which exhibits a relative area larger than that of any other parent peak 
belonging to the same observed peak. This parent is assumed to be the most abundant 
one even though a fraction of its area may be outside either limits of the observed 
peak. Of course, owing to parent peak interference phenomena, the correlation be- 
tween Ar, and Hr, is not obvious, and it depends on the degree of chromatographic 
saturation. 

In all simulations discussed in the following, the number of parent peaks, m, 
was set to 50. Some simulations, not reported here, were also performed with 25 or 
100 parent peaks. The distribution of peak heights, resulting from the adaptation of a 
theoretical model derived for a very large number of components to finite numbers of 
components [13], are not exactly the same for the different values of m. Therefore, the 
differences which appear in the absolute values of the probability curves, to be 
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described below, for different M can most likely be attributed to this artifact. How- 
ever, it is remarkable that the curves obtained at different M values but for a given 
saturation factor, m/T, are all parallel and very close to each other while curves 
corresponding to a given WI value but to different saturation factors are fairly distant 
from each other and have a different shape. This confirms that the saturation is the 
key parameter affecting chromatographic performances, 

RESULTS AND DlSC”SS,ON 

Probability of performing a quantitative determination, with an error smaNer than or 
equal to a given value, of the most abundant parent peak in a given observed peak 

Usually, the chromatographer does not have a precise and complete idea about 
all the components of the mixture under investigation; what he or she has is a chro- 
matogram containing several observed peaks, and he or she may be interested in 
determining quantitatively one or several particular components for which the reten- 
tion times are known, under given chromatographic conditions. Generally, the ob- 
served peak in the chromatogram which has a retention time (time corresponding to 
the peak maximum) relatively close to that of the component of interest is attributed 
to that component. Sometimes, further investigations (such as NMR and spectral 
analyses of some collected fractions or on-line coupling with mass spectrometry or 
Fourier transform infrared spectrometry, for instance) are needed to confirm the 
purity of all the peaks of interest. Nevertheless, in spite of the very high resolving 
power of some of these combined systems, such as gas chromatography-mass spec- 
trometry, the complete identification of a mixture has been demonstrated, in one case, 
to be impossible both experimentally and from a statistical point of view [16]. Thus, 
there is only a limited probability that the most abundant parent peak in an observed 
peak will correspond to the one the analyst wants to quantify. Therefore, one of the 
most important questions is to know the probability of performing such quantitative 
determinations, with an error smaller than or equal to eO. This probability is denoted 
P,,,h(e&en) or P,,,(e<e,,) depending on whether the quantitative determination is 
performed by measuring the height or the area of the observed peak, respectively. 
Obviously, these probabilities depend on Hr., and Ar,, respectively, but also on the 
saturation factor, m/T. 

Here the error, e,,, is computed with respect to the difference between the value 
of the height or area of the observed peak and that of most abundant peak. Accord- 
ingly, when measuring heights, the error is always positive owing to the increase in the 
peak height when interferences occur, whereas the error associated with area mea- 
surements may be either positive or negative. Therefore, in the following, the absolute 
value of e. is used for the area determinations. 

For a fixed saturation factor, 10 000 simulations were done (Ns= 10 000). For a 
given parent peak, exhibiting a given Hr, (or Ar,) value, the computation procedure 
consists in the evaluation of the number of times, N,,,.j,h(Hr,,e<eo), where this partic- 
ular parent peak was found to be the most abundant one in the observed peak to 
which it belongs and where the error associated with its height determination is 
smaller than,a given value, eo. Similarly is evaluated the number of times, Nmaj,. 
(Ar,,e<eo), where the given parent peak was found to be the most abundant one in 
the observed peak to which it belongs and where an error smaller than e. is made in 



its area determination. One is interested in the variation of the probabilities Pa,* and 
P,.. with Hr. and Ar., respectively. However, the height and area of the observed 
peak where the given parent peak is found to be the most abundant and where the 
determination is made with an error e <eO are different from one simulation to anoth- 
er. Therefore, the variation of the probabilities Pa,* and Pa,: with Hr, and Ar, can be 
obtained only indirectly. Each time that the parent peak wth a given Hr, (or Ar,) is 
found to be the most abundant in an observed peak with e <e,,, the height, or area, of 
the observed peak is tabulated and, at the end, the averages, Hr.,., and Ar,,,,, of all 
tabulated values are calculated. The values of the probabilities are then given by 

It is interesting to compare the two probability values (based on area and height 
measurements) obtained for a similar mean value of Hr, and Ar,. This comparison 
was made with 10 000 simulations and for both a relatively low-density chroma- 
togram having a saturation factor m/T=0.05 and a relatively dense chromatogram 
five times more crowded (m/T= 0.25). The admitted relative error, e,,, was set to 10%. 
Fig. 1 shows the variation of P,,,(e<O.l) and P,,.(e<O.l) as a function of Hr, and 
Ar,, respectively, for these two values of the saturation factor. 

Both probabilities decrease with increasing relative area and height of the ob- 
served peaks, which leads to the conclusion that the larger is the observed peak. the 
higher is its probability of being contaminated. The probabilities are lower at high 

Pig. 1. Variation of the probability of performing a quantitative determination of the height of the major 

parent peak in an observed peak, with an emx smaller than or equal to 0.1, P&<&l), as a function of 
the relative height of the observed peak, Hr,, for a saturation factor m/T= 0.05 (curve I) and 0.25 (curve 4). 
respectively. Variation of the probability of performing a quantitative determination of the area of the 
major parent peak in an observed peak, with an error smaller than or equal to 0. I PO,_@< 0. I), as a function 

of the relative area of the observed peak, Ar,, for a saturation factor mjT=O.O5 (curve 2) and 0.25 (curve 
31, respectively. 
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saturation than at low saturation, which reflects the fact that peaks are more likely to 
be contamined when the chromatographic saturation is high. At low saturation fac- 
tors, the decrease in both probabilities is less pronounced than thar at high saturation 
factors. Moreover, the simulations show that at high saturation, the probability of a 
correct quantitative determination is higher when the peak area rather than the peak 
height is used for the measurements. Nevertheless, this observation is no longer valid 
at low saturation factors, for which the probability of correct determination using 
height measurements was found to be higher than that of area measurements. How- 
ever, in this instance the difference between the two probabilities is smaller than at 
high saturation and is expected to decrease as the saturation decreases. Indeed, at 
very low saturation, i.e., when m/Ttends toward 0, both measurements will be equiv- 
alent and will lead to determination probabilities which tend toward 1. Therefore, it 
seems that, for relatively high chromatographic saturations, peak heights will be more 
seriously affected by interferences than will peak areas. As the problem of quantita- 
tive determination is more serious when the saturation is relatively high and as most 
commercial integrators express quantitative results by mean of area measurements, 
we shall only consider the area measurements in the following to express the determi- 
nation probabilities. 

Variation of P...(e <eo) with the relative area of the observed peaks 
For a given chromatographic saturation, the probability of performing a quan- 

titative determination of the most abundant peak in an observed peak, with an error 
smaller than or equal to eo, depends on the relative area of this observed peak. The 
general shape for the variation of this probability as a function of Ar., for different 
values of the accepted error, eo, and for a saturation factor m/T=0.25, is shown in 
Fig. 2. As expected, for a fixed value of Are, the higher is the tolerated error the higher 
is the probability of correct determination. However, it may seem surprising that, for 
a relatively large domain of low Ar, values, i.e., Ar.<0.3%, the probability remains 
almost constant, then decreases rapidly as Ar, increases (however, there is one excep- 
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Fig. 2. Variation ofthe probability P,,,(e<e,) as a function of the relative area of the observed peak, A?,, 
for different values of the accepted ermr, eO, and for a saturation factor m/T=O.ZS. e,: (I) 0.5; (2) 0.1; (3) 
0.05; (4) 0.01. 



tion to this behaviour for the curve corresponding to e~0.5, which exhibits a mini- 
mum at about A?.= 5%). The conclusion drawn from these curves is that if a small 
observed peak were to be found in a chromatogram, the probability of performing 
correctly the determination of its most abundant component is relatively high. In 
other words, a small peak has little chance of being observed in the chromatogram, 
but once it is observed, it is likely to be relatively pure. The probability P,,,. decreases 
when the observed peak becomes larger. Therefore, larger parent peaks have more 
chance of representing the most abundant peaks in the observed peak, but they are 
most likely to be contaminated by the interferences with other parent peaks. 

The exception found when e < 0.5 can be explained by the fact that it is rare that 
the error in the measurement of the area of a large parent peak exceeds 50%. A 
similar result was obtained by Nag& et al. [7], but with a minimum at Ar, = 3%. This 
corresponding Ar, value is most likely to vary with the saturation factor. The present 
simulation allows the estimation of the probability of correct determination for ob- 
served peaks with relative areas as low as O.Ol%, which is ten times lower than the 
results obtained by Nagels ef al., probably because they used a relatively small nutn- 
ber of parent peaks in their simulations. In fact, owing to the sampling from the 
parent peak-area distribution, the achievement of lower values of Ar, relies on the 
simulation of a larger number of parent peaks, m, in the chromatogram, whereas the 
achievement of lower Ar. values depends also on the saturation of the chromatogram. 

Fig. 3. shows the variation of P,,.(e<O.l) as a function of Ar, for different 
values of the saturation factor, m/r. These curves can be used to estimate the prob- 
ability of performing the quantitative determination of the most abundant peak in an 
observed peak, for different values of the saturation factor. As expected, at a fixed 
value of Ar,, this probability of correct determination increases as the chromato- 
graphic saturation decreases. In addition, at a fixed value of Ar,, the rate of increase 
of the probability with decreasing saturation factors is larger for larger values of the 
saturation factor. Thus, for Ar,= l%, when the saturation factor decreases from 0.5 
to 0.25 the probability P,,.(e<O.l) increases by 44.5%, whereas starting with a sat- 
uration factor equal to 0.25 and decreasing it by half to 0.125 leads to an increase in 
the probability of only 23%. 

Fig. 3. Variation of the probability P_(e<O.l) as a function of the relative area of the observed peak, Ay, 
for different values of the saturation factor m/T. m/l? (1) I/20; (2) I/12; (3) I/S; (4) l/6; (5) L/4; (6) l/2. 
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From these computations we can also represent the variation of P&e<O.l) as 
a function of the saturation factor, at different values of Ar,. The variation of this 
probability, for different values of Ar,, is reported on Figure 4, as a function of the 
reciprocal of the saturation factor, which is a more convenient representation as we 
know that the probability of correct determination tends towards zero for an infinite 
saturation factor. At a fixed AT,, as the saturation decreases, i.e., as Tincreases form 
fixed, P.,,(e<O.l) increases rapidly at first, then tends more slowly toward 1. As 
discussed above, one sees that, for a fixed saturation factor, P&e < 0.1) increases 
with decreasing Ar,. 

Probability of performing a quantitative determination, with an error smaller than or 
equal to a given value, of a given parent peak 

In addition to the probability of performing the quantitative analysis of the 
most abundant peak in an observed peak, the chromatographer is also interested in 
knowing the probability associated with the quantitative determination, with an fixed 
error, of a given parent peak. Actually we are looking for the quantitative determina- 
tion of a particular parent peak, in contrast to the previous probability where we were 
investigating each observed peak in the chromatogram, and computing the probabil- 
ity of determining the most abundant peak. Again, the probability of quantitative 
determination of a parent peak, with a fixed error, depends also on the degree of 
saturation in the chromatogram and on the relative area of the parent peak, Ar,. This 
probability is referred to as P,,.(e<eo). The error, e, is calculated on the basis of the 
comparison between the observed peak containing the parent peak and the parent 
peak itself. This probability is computed by accounting the number of times, N. 
(e<e& where the parent peak can be determined with an error smaller than or equal 
to eo, when N, simulations are performed. Hence the probability is calculated as 

P&e < eo) = N,(e < eo) / N, (3) 

Variation of P,,,(e <eo) with the relative area of a parent peak 
For a fixed saturation factor. more than 10 000 simulations are performed in 

Fig. 4. Variation of the probability P&G 0.1) as a function of T/m, the reciprocal of the saturation factor, 
for different values of the relative area of the observed peak, At-,. Al,: (I) 0.1%; (2) I%; (3) 10%. 
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order to estimate P,,,. for different values of the accepted error. Fig. 5 shows the 
variation of P,,.(e <eo) for a saturation factor equal to 0.25 and for different values of 
eo. Obviously, for a fixed Ar, and a given saturation factor, the probability of a 
correct quantitative determination increases as the accepted error increases. At a fixed 
saturation factor, it seems that the general shape of the curve of variation of P,,. 

(e<eo) with Ar, depends on the value of the accepted error. Nevertheless, the global 
behaviour observed is an increase in the probability with increasing Ar,, which differs 
strongly from the behaviour observed in Fig. 2 for P,,,(e<e,) ~er.w Ar,. It is expect- 
ed that the probability of performing a correct quantitative determination of a parent 
peak increases with its area, as larger parent peaks are relatively less affected by the 
overlap with smaller parent peaks. Nevertheless, it seems that this observation is not 
valid when the accepted error is relatively low, as the curves for eG0.01 and, to a 
lesser extent, fore< 0.05 appear to become approximately constant when Ar, exceeds 
3% or even to exhibit a maximum at about Ar,= 3%. No simple explanation can be 
envisioned to account for this unexpected observation, which is associated with a 
relatively high saturation factor. This phenomenon is reported here for the first time. 
The calculations performed by Nagels et al. [7] did not show a similar observation, 
probably because the saturation factor corresponding to their computations was not 
high enough. 

Fig. 6a and b show the variation of Pp.. as a function of Ar, for different values 
of the saturation factor, m/T, at two different accepted errors, e. = 0.1 and 0.5, respec- 
tively. Again, for a given saturation factor, the probability of correct quantitative 
determination is seen to increase as the area of the parent peak increases. This in- 
crease is almost linear for the curves in Fig. 6a corresponding to e0 = 0.1, which means 
that the probability of correct determination varies exponentially with the relative 
area of the parent peak, whereas the rate of increase of the probability with Ar, for 
e0 = 0.5 (Fig. 6b) is much more pronounced, especially at relatively high saturation 
factors. For a fixed parent peak, the probability of its correct quantitative determina- 
tion increases as the saturation factor decreases, because interferences between par- 

0.1 1 
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Fig. 6. (a) Variation ofP,,,(e<O.l) as a function of the relative area of the parent peak, Ar,, for di&rent 
values of the saturation factor. m/T (I) l/20; (2) 1112; (3) IIS; (4) I/6; (5) I/4; (6) 1,~. (b) Variation of 
P,,,(e<OS) as a function of the relative area of the parent peak, RR,, for different values of the saturation 
factor. m,r: (I) l/20; (2) l/12; (3) I/8; (4) l/6; (5) I/4; (6) ,,2. 

ents peaks diminish when the degree of chromatographic saturation decreases. 
These curves can be used in order to estimate the probability of correct determi- 

nation for a given parent peak. In addition, they provide a means of estimating the 
upper limit of the saturation factor, i.e., the minimum resolving power, required to 
achieve a given probability of performing correctly a quantitative determination 
within some tolerated error. 

Computation of the quantitative determination limit 
The quantitative determination limit, DL:, corresponds to the minimum rela- 

tive abundance of a parent peak, expressed as a percentage of the whole chroma- 
tographic response, which leads to a probability, p, of performing its quantitative 
determination with an error smaller than or equal to some fixed value e. Since the 
variation of the probability, P&e<e,), of quantitative determination, with an error 
smaller than or equal to eo, of a parent peak of given relative area, Ar,, has already 
been studied, it is then possible to estimate DLf, for a given saturation factor, by 
using one of the curves in either Fig. 6a or b, depending on the chosen value of the 
accepted error. Hence, DL, for a given accepted error, corresponds to the value of 
Ar,, estimated from the curve corresponding to the appropriate saturation factor, 
which leads to the desired probability of correct quantitative determination. Revers- 
ing the coordinates in Fig. 6a and b shows that, for a fixed accepted error and for a 
given saturation factor, DL: increases very steeply with the required probability, p, In 
addition, for a given required probability, p, the smaller is the accepted error, the 
greater is the value of the determination limit, 

The domain of the saturation factor, m/T, investigated in this study lies between 
0.05 and OS. In other words, this corresponds to a degree of occupancy of the chro- 
matographic space between 10% and 100% of the peak capacity, if the peak capacity 
is calculated on the basis of a 20 separation. The corresponding interval becomes 
14.2-142% of a,, if n, is calculated on the basis of a 2.840 separation, as it should be 
in order to see as many maxima as there are peaks in the chromatogram when taking 



QUANTITATIVE DETERMINATION LIMIT 35 

into account the distribution of peak heights [14]. Within this domain of saturation 
investigated, it appears from Fig. 6a that it is impossible to achieve a probability of 
determination of the parent peak equal to 0.9 for an accepted error smaller than or 
equal to 10%. This means that in order to achieve a probability of determination as 
high as 0.9 with an error smaller than or equal to 0.1, the chromatographic saturation 
factor must be well below 0.05, even for the largest parent peaks in the mixture. 
However, if one chooses a probability of determination equal to 0.5, with an associ- 
ated error smaller than or equal to 0.1, the quantitative determination limit, DL$:?, is 
then equal to 8% and l%, for m/T = 0.167 and 0.125, respectively. Fig. 6b shows 
that, with an accepted error of 0.5, it is possible to achieve probabilities of quantita- 
tive determinations as high as 0.9, especially at low saturation factors. 

Fig. 7 shows the variation of two quantitative determination limit parameters, 
DL::: and DL:::, as a function of the saturation factor. Both DL are seen to increase 
as the saturation increases, but this increase is more pronounced for DL$::, which is 
certainly due to the fact that the probability of correct determination is more sensitive 
to the increase in the saturation factor for low rather than for high values of the 
accepted error. Ultimately, whatever e and p, all DL curves will tend toward 100% at 
very large saturation factors. 

In practice, for a given complex chromatogram, the saturation factor can be 
calculated by means of one of the recently developed procedures for estimating the 
number of sample components [l-5]. Then the values of various DL! parameters can 
be estimated from curves such as those in Fig. 7. Alternatively, they can be used to 
evaluate the reduction of the DL values resulting in the improvement of the sep- 
aration power of a chromatographic system or from switching to another more effi- 
cient separation system. 

CONCLUSION 

The problem of quantitaiive analysis from chromatograms of complex mix- 
tures appears to be very serious. From a statistical point of view. even for the largest 

Fig. 7. Variation of the quantitative determination limit, Dl.:, corresponding to a probabilityp of perform- 
ing a quantitative determination of a parent peak with an error smaller than of equal to e as a function of 
the saturation factor m,T. (l)p=O.9 and e=0.5; (Z)p=O.5 and e=O.l 
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parent peaks the probability associated with their quantitative determination, with an 
error smaller than or equal to given value, can be very low, especially if the chroma- 
tographic saturation factor is relatively high. In order to achieve a reasonable prob- 
ability of correctly performing a quantitative determination, the chromatographic 
system must exhibit a very high resolving power, i.e., it must have a peak capacity 
greatly exceeding the number of components in the sample. In addition, it was found 
that small observed peak are most likely to be pure but on the other hand, the 
probability of finding them in a typical complex chromatogram is relatively low. One 
must be more careful when quantifying large observed peaks, as they are most likely 
to be the result of two or more parent peaks lumped together. 

The use of the quantitative determination limit, OQ’, permits the quantifica- 
tion, in probabilistic terms, of the effect of peak overlap phenomena on quantitative 
determinations. This parameter is expressed in terms of a fraction of the whole chro- 
matographic response. Thus, for a component of interest, it is easy, when its response 
factor is known, to convert DL into a specific parameter, S’DL: expressed as the 
weight fraction of solute in the analysed mixture, which allows one to quantify the 
ability of the chromatographic system to analyse this particular solute, in the studied 
matrix. Indeed, the parameter .SDq, which is associated with the “horizontal” sourc- 
es of error (the interferences between parent peaks), can be compared with the classi- 
cal limit of determination, which reflects the effect of the “vertical” source of error 
(the influence of noise in the signal). As they most likely are independent, the largest 
of these two parameters will impose the overall limit of determination. In addition, 
the curves of the variation of DLf (or SDL:) as a function of the saturation factor 
allow one to estimate the efficiency of the chromatographic system required to ob- 
tained a reasonable probability of performing the quantitative determination of a 
given parent peak within some tolerated error. 

Of major importance here is the fact that the larger is the response factor of a 
solute with a particular detector, with respect to the whole chromatographic re- 
sponse, the lower is the amount of this component which can be determined with a 
reasonable probability and an accepted error, that is, the more likely is the chance 
that this solute produces a chromatographic signal which is above the DL level. In 
addition to seeking an increase in the resolving power of the chromatographic system 
when analysing complex mixtures, it seems that one of the major tasks for the analyst 
interested in the quantitative determination of one or a few components is certainly 
the optimization of the detection, in order to make it more selective for the compo- 
nents of interest. This step in any development of an analytical procedure can be 
decisive for its success. In this respect, the present statistical study allows one to 
express quantitatively the improvement brought into the validity of the quantitative 
determination of a component by any increase in its relative response factor. 

This study has been presented within the context of chromatography, but it is 
clear that its results can be extended to any kind of zonal separation method provided 
that the hypotheses underlying the simulation model (randomly distributed Gaussian 
zones with constant standard deviation) can correspond to realistic attributes of the 
method. 
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